(۳-۷) برای توزیع گسسته

برای یک متغییر تصادفی پیوسته

(۳-۸)

xیک متغییر تصادفی را نشان می‌دهد و x نشان دهنده یک مقدار مشخص است.

(۳-۹)

۳-۶-۲- قوانین تصمیم‌گیری ‌بر اساس تسلط تصادفی مرتبه اول

برای رتبه‌بندی دو سرمایه‌گذاری با تابع توزیع تجمعی F(x) و G(x)، با توجه به معیار تسلط تصادفی مرتبه اول، هنگامی یک سرمایه‌گذاری بر سرمایه‌گذاری‌های دیگر مسلط است که شرایط زیر موجود باشد:

فرض بر این است که U یک تابع پیوسته و غیرکاهشی است.

برای همه توابع مطلوبیت ، F ‌بر اساس تسلط تصادفی مرتبه اول بر G مسلط است اگر و تنها اگر رابطه برای همه مقادیر x برقرار باشد، یا به عبارت دیگر داشته باشیم:

(۳-۱۰)

و حداقل ای وجود داشته باشد که به ازای آن‌ نامساوی به طور قطع برقرار است.

بیانگر این مطلب است که F ‌بر اساس معیار تسلط تصادفی مرتبه اول بر G غالب است و اندیس یک علی‌رغم اشاره به نوع تسلط که مرتبه اول است بیان می‌کند که فقط یک بخش از اطلاعات ‌در مورد U که همان غیرکاهشی بودن است استفاده شده است. از آن جا که تسلط تصادفی مرتبه اول مرتبط با می‌باشد لذا داریم:

(۳-۱۱)

برای همه و نامعادله قطعا به ازای حداقل یک برقرار خواهد بود.

برای همه مقادیر x و نامعادله قطعاً به ازای حداقل یک برقرار خواهد بود.

برای سهولت همیشه فرض می‌کنیم که x همواره بین دو عدد قرار داد و محدود است و برای رابطه و برای رابطه برقرار است. همان طور که اشاره شد رابطه برای همه مقادیر x برقرار می‌باشد، ما باید نشان دهیم که رابطه برای همه برقرار خواهد بود.

با توجه به تعریف مطلوبیت مورد انتظارداریم:

(۳-۱۲)

که a حد پایین است و b حد بالا است و f(x) و g(x) تابع چگالی بازده سرمایه‌گذاری می‌باشند. عبارت فوق به صورت زیر هم نوشته می‌شود:

(۳-۱۳)

(۳-۱۴)

(۳-۱۵)

با توجه ‌به این که و با توجه به مفروضات، رابطه برای همه مقادیر x برقرار است. برای داریم . جواب انتگرال یک عدد غیرمنفی خواهد بود. ‌بنابرین‏ برای همه داریم:

(۳-۱۶)

برای آن‌که بدانیم F قطعا بر G غالب است ما بایستی بتوانیم حداقل عضو پیدا کنیم که به ازای آن رابطه زیر برقرار باشد:

(۳-۱۷)

با توجه به وجود در باید یادآوری کرد که در تسلط تصادفی مرتبه اول حداقل یک مقدار وجود دارد که به ازای آن رابطه زیر برقرار است:

(۳-۱۸)

توجه کنید که اگر رابطه برای همه برقرار باشد، F بر G مسلط نیست. علاوه بر این نشان داده شده است که شرایط بیان می‌کند که حداقل یک تابع مطلوبیت وجود دارد که به ازای آن رابطه برقرار است. چون برای همه توابع مطلوبیت دیگر رابطه برقرار است و برای یک نامعادله قطعی وجود دارد، ما نتیجه می‌گیریم که F ‌بر اساس تسلط مرتبه اول بر G مسلط است. ‌بنابرین‏ ثابت کردیم که اگر رابطه برای همه مقادیر x و رابطه برای برخی مقادیر x برقرار باشد، ‌بنابرین‏ رابطه برای همه برقرار خواهد بود و حداقل وجود دارد که به ازای آن رابطه برقرار است، در نتیجه ( لوی، ۲۰۰۶: ۵۹-۵۵).

۳-۶-۳- شرح نموداری قوانین تسلط تصادفی مرتبه اول

در شکل ۳-۱ پنج تابع توزیع تجمعی مشاهده می‌شود که منطقه موجه[۹۳] ‌بیان کننده همه فرصت‌های سرمایه‌گذاری را نشان می‌دهند. با توجه به شکل مرز کارای تسلط تصادفی مرتبه اول شامل و است و ، و در مرز غیرکارا قرار می‌گیرند.

    1. معیار تسلط تصادفی مرتبه اول نشان می‌دهد دو توزیع که از نظر نموداری مقایسه می‌گردند، می‌توانند بر هم مماس باشند اما نباید همدیگر را قطع کنند. بر مسلط است. در برخی مقادیر رابطه برقرار است ولی برای همه مقادیر x رابطه برقرار است و حداقل ای وجود دارد که به ازای آن رابطه برقرار باشد.

    1. برای این‌که یک سرمایه‌گذاری به مرز غیرکارا انتقال یابد تنها کافی است یک سرمایه‌گذاری وجود داشته باشد که بر سرمایه‌گذاری غیرکارا مسلط باشد.

    1. در مرز غیرکارا یک سرمایه‌گذاری ممکن است بر یک سرمایه‌گذاری دیگر مسلط باشد یا نباشد. برای مثال بر مسلط است اما مسلط بودن یا نبودن در مرز غیرکارا غیر مربوط است و همه سرمایه‌گذاری‌ها در این محدوده نامناسب هستند و هیچ سرمایه‌گذاری با ترجیح موقعیت سرمایه‌گذاری از مرز غیر کارا را انتخاب نمی‌کند.

    1. یک سرمایه‌گذاری در مرز غیرکارا نمی‌تواند بر یک سرمایه‌گذاری در مرز کارا غالب شود زیرا در صورت وجود چنین شرایطی سرمایه‌گذاری دوم در مرز کارا قرار نخواهد گرفت. به عنوان مثال اگر بر مسلط باشد، یک سرمایه‌گذاری کارا نخواهد بود.

  1. در نهایت، همه سرمایه‌گذاری‌ها با مرز کارای تسلط تصادفی مرتبه اول(FSD) باید هم‌دیگر را قطع کنند. بدون چنین شرایطی یک توزیع بر دیگری مسلط خواهد شد اما کارا نخواهد بود. برای مثال در شکل و که مرز کارا را تشکیل می‌دهند هم‌دیگر را قطع می‌کنند(لوی، ۲۰۰۶: ۶۱-۵۹).

تابع توزیع تجمعی

بازده

نمودار ۳-۱٫ مرز کارا و غیرکارای معیار تسلط تصادفی مرتبه اول(لوی، ۲۰۰۶: ۶۱)

۳-۶-۴- شرح مفهومی تسلط تصادفی مرتبه اول

تسلط تصادفی مرتبه اول بیان می‌کند اگر F بر G مسلط باشد، نمودار F بایستی برای همه مقادیر x زیر G قرار بگیرد. شرط برای همه مقادیر x را می‌توان به صورت برای همه مقادیر x نوشت. چون در نتیجه . اگر F ‌بر اساس معیار تسلط تصادفی مرتبه اول بر G مسلط باشد، برای همه مقادیر x احتمال به دست آوردن x یا مقدار بیشتر از x در F بیشتر از G است. چنین احتمالی توسط هر سرمایه‌گذاری مطلوب است و تسلط F بر G را ‌بر اساس تسلط تصادفی مرتبه اول نشان می‌دهد(لوی، ۲۰۰۶: ۶۴).

۳-۷- مفاهیم آماری تسلط تصادفی مرتبه دوم

در این قسمت مفاهیم آماری تسلط تصادفی مرتبه دوم شامل بیان آماری مفروضات، قوانین تصمیم‌گیری تسلط تصادفی مرتبه دوم، شرح نموداری تسلط تصادفی مرتبه دوم و شرح مفهومی تسلط تصادفی مرتبه دوم ارائه شده است.

۳-۷-۱- ریسک گریزی

در تسلط تصادفی مرتبه اول فرض بر این بود که وجود دارد که است. شواهد بسیاری نشان می‌دهد که اکثر سرمایه‌گذاران ریسک‌گریز هستند. ‌بنابرین‏ به مفروضات توابع مطلوبیت غیرکاهشی و ، فرض ریسک‌گریزی را هم اضافه می‌کنیم. ریسک‌گریزی به روش‌های مختلفی قابل تعریف است:

    1. تابع مطلوبیت مشتق اولیه غیر منفی( ) و مشتق دوم غیر مثبت دارد ( ) و حداقل یک نقطه وجود دارد که در آن و یک نقطه هم وجود دارد که در آن می‌باشد.

  1. اگر دو نقطه را روی تابع مطلوبیت مشخص کنیم و با خطی آن ها را به هم وصل کنیم، این خط یا زیر و یا روی تابع مطلوبیت قرار می‌گیرد و حداقل یک خط وجود دارد که حتما زیر تابع مطلوبیت قرار بگیرد(مطابق نمودار ۳-۲).

تابع مطلوبیت

نمودار ۳-۲٫ تابع مطلوبیت فرد ریسک‌گریز(لوی، ۲۰۰۶: ۷۷)

  1. مطلوبیت مورد انتظار کوچکتر مساوی مطلوبیت بازده مورد انتظار است. به طور دقیق‌تر، فرض کنید که ما یک سرمایه‌گذاری داریم که با احتمال p و با احتمال را به دست می‌دهد. ‌بنابرین‏ داریم:

(۳-۱۹)

موضوعات: بدون موضوع  لینک ثابت


فرم در حال بارگذاری ...